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ABSTRACT 

The calculation of base shear and overturning moment on a large 
(rigid) offshore structure is complicated by the inclusion of added mass 
and damping coefficients required to account for the structure's 
interaction with the surrounding ocean. Vertical axisymmetric structures 
have found a variety of applications such as oil storage tanks, 
production platforms and so on. The paper describes an efficient 
calculation procedure for determining the added mass and damping 
coefficients and consequently the earthquake loading of such structures. 
The approach used is based on a boundary element method involving an 
axisymmetric Green's function, and exploits the structure's axisymmetry 
to provide a highly efficient computational procedure suitable for 
carrying out on a desk-top computer. Results of maximum base shear and 
overturning moment are presented for a conical structure. 

INTRODUCTION 

The use of linear diffraction computer programs to calculate wave 
forces on large rigid offshore structures is now an established procedure 
in offshore design (eg. Sarpkaya and Isaacson, 1). The earthquake 
loading problem for such structures is directly related to the wave 
loading problem for structures undergoing motions, in that the same added 
mass and damping coefficients are required in order to account for the 
structure's interaction with the surrounding ocean. 

Computer programs applicable to structures of arbitrary shape are 
quite costly. Alternative methods which are much more economical have 
been developed for more restricted configurations, in particular, 
vertical axisymmetric structures which have found various applications 
such as oil storage tanks and oil production platforms. This case has 
been treated by several authors in the context of wave loading, including 
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Fenton (2) and Isaacson (3), and the purpose of the present paper is to 
reconsider this case in the context of the earthquake loading problem. 
It is emphasized that a prescribed base motion is considered and the 
structure-foundation interaction problem is specifically not treated. 

The approach used is based on a boundary element method involving an 
axisymmetric Green's function, and exploits the structure's axisymmetry 
to provide a highly efficient computational procedure suitable for 
carrying out on a microcomputer. The computational effort required is 
much less than for arbitrarily shaped bodies because of an extension to 
the analysis in which Fourier expansions are used to reduce the governing 
surface integral equation to a series of line integral equations, of 
which only one need be solved. 

Results for a conical structure are presented, giving the relevant 
added mass and damping coefficient of the structure and the transfer 
functions relating base shear and overturning moment spectra to the base 
acceleration spectrum. 

THEORETICAL DEVELOPMENT 

A rigid vertical axisymmetric structure is resting on a horizontal 
seabed in water of constant depth, as depicted in Fig. 1(a), and is 
subjected to a unidirectional and sinusoidally varying base motion in the 
horizontal plane, given as C exp(-iwt), where t is time, w is the 
angular frequency of the motion, and C is the complex amplitude of the 
motion. For simplicity, only a uni-directional motion is treated here, 
but the extension to several modes of base motion is straightforward by a 
consideration of the corresponding wave loading problem for a floating 
body (Ref. 3). 

Let (r,0,z) form a cylindrical coordinate system with z measured 
vertically upwards from the seabed along the structure's axis, r 
measured radially from the z axis, and 0 measured from the direction 
of motion (see Fig. 1(a)). The fluid is assumed incompressible and 
inviscid and the flow irrotational. The fluid motion can thus be 
described by a velocity potential which satisfies the Laplace equation 
within the fluid region. In addition, the amplitude of motion is assumed 
sufficiently small for the boundary conditions at the water surface to be 
linearized. Consequently, the velocity potential is subject to the usual 
boundary conditions, linearized where appropriate on the seabed, the 
structure surface, the free surface and the far field. 

The velocity potential is harmonic and proportional to the motion 
amplitude, and may thus be written as tC exp(-iwt). In the boundary 
integral method, the unknown potential $(x) at the general point 
x - (r,0,z) is represented as due to a source distribution over the 
structure's surface So, and is thus expressed as: 

1 $(x) - 
4R

j f(X) G(x,X) dS (1) 
— -- S0 
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Here f(X) is a source strength distribution function, G(x,X) is a 
Green's function for the general point x due to a source of unit 
strength at X, and the integration is carried out for all points X 
over So. G is itself chosen to satisfy the Laplace equation, the 
seabed and linearized free surface boundary conditions, and the radiation 
condition. This ensures that • also satisfies these equations, and it 
remains for f to be chosen so as to ensure that the boundary condition 
on the structure surface is satisfied. 

This boundary condition equates the fluid velocity normal to the 
surface to the velocity of the surface itself in that direction, and 
reduces to: 

- iw cosa cos0 (2) 
an 

in which n, a and 0 are defined in Fig. 1(a). This boundary 
condition, together with the representation for t given in Eq. 1, gives 
rise to a surface integral equation for f: 

1 1 ac f(x) + j f(X) (x,X) dS -iw cosa cos0 (3) 
2 — 4x So an — 

Here n is measured from the point x, and the integration is carried 
out over the point X. In Eq. 3, x lies on the structure surface and 
may be defined by the coordinates (W,0), where s is indicated in Fig. 
1, and X may be defined by corresponding coordinates (s',6'). 

Because of the structure's axisymmetry, the functions •, f and G 
for points on the structure surface may be expanded as Fourier series: 

#m(s) cos me 

fm(s) cos me 

Gm(s,s') cos m(0-0') G(8,8,0,0') m-2.  o 

and only the terms corresponding to m.1 will be required here. 
Substituting Eqs. 5 and 6 into Eq. 3, algebraic manipulation yields a set 
of line integral equations, of which the equation corresponding to m-1 
is: 

3G, 1 -fl(s) + j f
1 
 (0) R(s') (so') ds' - 2iw coact (7) 

2 So an 
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Here so is the structure's entire contour described by s, and R(e) 
is the structure's radius at s'. 

In a numerical solution to Eq. 7, the contour so  is discretized 
into N short segments with the function fl  taken to be uniform over 
each segment, and Eq. 7 is applied at the centre of each segment. Thus 
Eq. 7 may be approximated by a matrix equation: 

Ajk fk(1) = - 21w cos aj for j = 1,2,...N (8) 
k=1 

where fk(1) denotes fi(sk). Expressions for the matrix coefficients 
Alk are give,,  uy Fenton (2Y and by Isaacson (3). Once the source 

y strengths fkrl  are determined, the potential itself can be obtained by 
a discretized form of Eq. 1. The necessary Fourier coefficient .1  at 
the j-th segment centre can be approximated as: 

.1(8j) I k!].  fk(1) Cjk
for j = 1,2,...N (9) 

Once more, Fenton (2) and Isaacson (3) provide expressions for the 
coefficients Cjk. 

Now that the potential function .1  is known, the hydrodynamic 
loads on the structure may be evaluated. The hydrodynamic pressure 
acting on the structure surface is given by the linearized Bernoulli 
equation, p = lap 0,ezp(-iwt), where p is the fluid denitx. Thus the 
horizontal force Fi/ exp(-iwt) and overturning moment F 11  exp(-iwt) 
due to the fluid may be expressed as: 

F (f)  = - iwp JS + nj  da , for j - 1,2 (10) 
o 

 

where nl  = cosa cos° 
n2  = z cosa cos6 - r sins cos6 

Substituting the Fourier expansion of 4, Eq. 5, and integrating with 
respect to 6, we obtain 

F (f)  - - w iwp k!
1 - 

Lurknjk  +1(8k) for j = 1,2 (11) 
= 

where Lk  is the length of the k-th segment, and 

nik = cos ak  

n2k zkcos(ak) - rk  sin(ak) 

The fluid forces Fi(f)  are conveniently expressed in terms of added 
masses aj  and dam$ing coefficients bj  by taking: 
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F (f)  = w2aj  + iwbj (12) 

in which a4  and b4  are real. Consequently, ai  and b4  may be 
retrieved b# separating the real and imaginary pares of Fj(f). It is 
emphasized that aj  and bj  are frequency dependent variables. 

The remaining loads acting on the structure are the base shear 
F1  exp(-iwt) and the overturning moment F2  exp(-iwt) imposed by the 
structure's foundation, as indicated in Fig. 1(b). Thus the equations of 
motion of the structure may be expressed as: 

F = [-w2(mj  + aj) - iwbj] for j = 1,2 (13) 

where m1  is the mass of the structure and m2  = m1& with X defined 
in Fig. 1(b). Now that the added mass and damping coefficients are 
known, Eq. 13 can be used to determine the base shear and overturning 
moment acting on the structure. 

The extension to a random base motion is straightforward, with Eq. 
13 providing the transfer functions relating the base shear and 
overturning moment spectra SF  (f) to the base acceleration spectrum 

S-(f): 

SF  (f) = illj(f)12  Sz(f) for j = 1,2 (14) 

with 

Hj(f) = (mj  + aj) + ibj/w 

Similarly, the base shear and overturning moment may also be obtained 
from a time record of the base motion. 

RESULTS 

A computer program based on the method outlined here has been tested 
by Isaacson (3) for a number of reference configurations in the context 
of wave loading. As an example of its application, it has been used here 
to generate results for the conical structure indicated in Fig. 2. The 
computed added mass and damping coefficients for this structure are shown 
as functions of frequency in Fig. 3. The computations were carried out 
at 10 discrete frequencies, and were all obtained with N = 15. In this 
case, a 15z15 matrix equation is solved for each computation in contrast 
to the very much larger matrix equation required in a program valid for 
arbitrary structure shape. 

The corresponding transfer functions are given in Fig. 4. These may 
be used to obtain the base shear and overturning moment spectra for any 
design base acceleration spectrum. 



287 

CONCLUSIONS 

The effect of a horizontal base motion on a rigid axisymmetric 
offshore structure is considered. The added mass and damping 
coefficients, which are required to account for the ocean-structure 
interaction, are obtained by a boundary method involving an axisymmetric 
Green's function. This enables the computation to be carried out much 
more efficiently than for the case of an arbitrary structural 
configuration. 

As an example of the method's application, results are presented for 
a conical offshore structure. 
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Figure 3: Added mass and damping coefficients 

shown as functions of oscillation frequency. 

( r = base radius ) 
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Figure 4: Transfer functions relating base shear and 

moment spectra to base acceleration spectrum. 


